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Abstract

Transcription factors bind to sequence motifs and act as activators or repressors. Transcription factors interface with a constellation of acces-
sory cofactors to regulate distinct mechanistic steps to regulate transcription. We rapidly degraded the essential and pervasively expressed
transcription factor ZNF143 to determine its function in the transcription cycle. ZNF143 facilitates RNA polymerase initiation and activates gene
expression. ZNF143 binds the promoter of nearly all its activated target genes. ZNF143 also binds near the site of genic transcription initiation to
directly repress a subset of genes. Although ZNF143 stimulates initiation at ZNF143-repressed genes (i.e. those that increase transcription upon
ZNF143 depletion), the molecular context of binding leads to cis repression. ZNF143 competes with other more efficient activators for promoter
access, physically occludes transcription initiation sites and promoter-proximal sequence elements, and acts as a molecular roadblock to RNA
polymerases during early elongation. The term context specific is often invoked to describe transcription factors that have both activation and
repression functions. We define the context and molecular mechanisms of ZNF143-mediated cis activation and repression.
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Introduction

Sequence-specific transcription factors bind directly to DNA
and recruit cofactors and RNA polymerase to regulate gene
expression throughout the lifetime of all organisms. Tran-
scription factors specify tissue patterning throughout devel-
opment and their function is necessary to maintain cellular
and organismal homeostasis (1,2). Transcription factors are
comprised of DNA binding domains that recognize degener-
ate sequence motifs and effector domains that interface with
general transcription factors (GTF) and cofactors that special-
ize in regulatory roles such as chromatin remodeling, initia-
tion, pause release and elongation. Just as cofactors and GTFs
are specialists, transcription factors can specialize by predom-
inantly regulating specific steps in transcription (3-5). Factors
achieve this specificity by preferentially recruiting certain co-
factors through their effector domains. We propose that it
is critical to classify transcription factors by their molecular
function, as opposed to broad activator and repressor classes,
in order to understand the context specificity of gene regula-
tion. For example, recruiting a transcription factor that spe-
cializes in RNA polymerase pause release to a gene may have
little effect on transcription if redundant pause-release factors
are already present; at this gene a factor that recruits com-
ponents of the pre-initiation complex may cause potent ac-
tivation. This work provides a framework for systematically
determining the molecular functions of transcription factors
by stimulating their rapid depletion and quantifying changes
in RNA polymerase distribution at direct target genes in the
minutes following transcription factor depletion.

Despite advances in understanding the mechanisms of tran-
scription and developments in the systems biology of gene
regulation field, accurately predicting direct target genes of
transcription factors is a challenge. This struggle to predict
target genes is in part because of the lack of reliable input
data into predictive models. Researchers cannot experimen-
tally identify a comprehensive set of primary response genes
for the vast majority of transcription factors because they can-
not rapidly induce or rapidly inhibit their activity. We know
the most about transcription factors that are rapidly activated
by acute environmental changes such as heat stress or nu-
clear receptor factors that are induced by addition of steroids
(3,6-9). Many models rely on input data where a transcrip-
tion factor is depleted chronically for days or the lifetime of
a cell, so it is impossible to discriminate target genes from
the complex cascade of transcription dysregulation that fol-
lows. However, recent development of rapidly inducible de-
gron systems democratizes the study of transcription factors
that are not easily activated or inhibited (10-12). Here, we C-
terminally tagged all endogenous copies of the essential tran-
scription factor ZNF143 with FKBP™¢V in HEK-293T cells.
We rapidly depleted ZNF143 by adding dTAGV-1 to study its
molecular function and define ZNF143’s target genes.

The Xenopus homolog of ZNF143 was cloned and de-
scribed three decades ago (13). This original report charac-
terized the binding site and activator function of ZNF143
(contemporaneously termed Staf) using reporter assays (13).
Subsequent transcriptional profiling upon chronic ZNF143
depletion identified many up regulated and down regulated
genes (14); more genes were up regulated than down, and so
the authors concluded that ZNF143 is primarily an activator
while noting that ZNF143 may be involved in repression. Our
results confirm that ZNF143 binds DNA within 500 bases
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of the transcription start site (TSS) and stimulates transcrip-
tion initiation to activate genes. Furthermore, we define sev-
eral molecular mechanisms through which a canonical acti-
vator can paradoxically retain its activator function while di-
rectly repressing target genes in cis. Although cis repression
may only account for up to 30% of direct ZNF143-repressed
targets, alternative mechanisms of immediate indirect repres-
sion, such as relieving competition for cofactors (15-17), may
explain why additional genes are repressed indirectly.

While ZNF143’s role in gene regulation was established
nearly 30 years ago, many publications have since erroneously
reported that ZNF143 has a prominent role in chromatin
looping (18-23). However, two recent studies found that
ZNF143 has no role in chromatin looping (24,25). These
groups convincingly determine that the reason ZNF143 was
ascribed a looping role is because a commonly used ZNF143
antibody crossreacts with the looping transcription factor
CTCF (24,25). Herein we use rapid ZNF143 depletion and
molecular genomics to determine the molecular mechanisms
and context specificity of direct ZNF143-mediated activation
and repression.

Materials and methods

HEK-293T culture and ZNF143-dTAG clone
generation

HEK293T cells were cultured at 37°C with 5% carbon
dioxide in DMEM media supplemented with 10% fe-
tal bovine serum, 100 U/ml penicillin—streptomycin, 2.2
mM L-glutamine and 1 mM sodium pyruvate. We en-
dogenously tagged ZNF143 at the C-terminus in HEK-
293T cells as previously described (5,26). We targeted
ZNF143 endogenously using CRISPR loaded with the fol-
lowing short guide RNA: GAGGATTAATCATCCAACC-
CTGG. We cleaved the hSpCas9 plasmid PX458 (Addgene
#48138) with the enzyme Bbsl, then annealed oligonu-
cleotides 5"-CACCGAGGATTAATCATCCAACCC-3" and 5°-
AAACGGGTTGGATGATTAATCCTC-3’, and inserted the
annealed product into the plasmid. We generated a linear
homology-directed repair donor by amplifying the pCRIS-
PITChv2-dTAG-Puro plasmid (Addgene #91796) with the
primers in Table 1 (11). Following transfection of the donor
DNA and Cas9/sgRNA plasmid into HEK-293T cells, cells
were selected and cloned as described in (26). We selected
cells in media with 1 pg/ml puromycin and confirmed suc-
cessful integration by western blot as previously described (5).
We performed sequencing to confirm that all ZNF143 alle-
les were tagged. All ZNF143 coding sequences are correct,
but one tagged allele has a missense mutation at serine 68 in
FKBP12, which converts the serine to an asparagine. Despite
the mutation, ZNF143-dTAG efficiently degrades (Figure 1A
and B). After obtaining a correctly-tagged clone we passaged
cells thawed from frozen aliquots until the desired number
of cells for each experiment was reached, and then treated
with dTAGV-1 and collected cells for ATAC-seq, PRO-seq and
ChIP-seq.

Genome browser visualization

Genome browser (27) images were taken from the follow-
ing track hub: http:/guertinlab.cam.uchc.edu/znf143_hub/
hub.txt.
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Table 1. Homology directed repair primers

Primer Sequence

57 -A*A*GAAGCCATCAGAATAGCGTCTAGAATCCAACA
AGGAGAAACGCCAGGGCTTGACGACGGTGGCGGTGGCT
CGGGC-3~

Reverse 57 -A*A*GACTCCTTCTGCTTTATTGCTCCATT
GTTCTGAGGATTAATCATCCAATCAGGCACCGGGCTTG
CGGGTC-3~

These primers amplify FKBP6V-2xHA-P2A-Puro with 50 bases of ZNF143
homology. The asterisks mark phosphorothioate bond modifications to min-
imize degradation.

Forward

ATAC-seq library preparation

We prepared ATAC-seq libraries as previously described
(5,28). We treated cells with either Dimethylsulfoxide
(DMSO) or dTAGV-1 in DMSO for 30 min. After treatment,
we aspirated the media and scraped the cells on ice and cen-
trifuged them at 500 g for 5 min at 4°C. We resuspended
cell pellets in lysis buffer (0.1% NP40, 0.1% Tween-20,0.1%
digitonin) made in cold resuspension buffer (10 mM Tris-HCI
(pH 7.5), 10 mM NacCl, 3 mM MgCl, in water) and then in-
cubated on ice for 3 min. We mixed lysates with wash buffer
(0.1% Tween-20 in resuspension buffer) and centrifuged cells
at 500 g for 10 min at 4°C. We resuspended the pellets in a
transposition mixture (1 x Tagment DNA buffer, 0.1% ul-
trapure distilled water, 0.01% digitonin, 0.1% Tween-20 in
phosphate-buffered saline (PBS) and added 2.5 ul of TDE1
TnS transposase (Illumina Tagment DNA TDE1 Enzyme and
Buffer Kit). We incubated the transposition reaction at 37°C
for 30 min. We isolated DNA from the reaction with the DNA
Clean and Concentrator-5 kit. We added adapters and am-
plified DNA over eight cycles of polymerase chain reaction
(PCR) using the NEBNext Ultra II kit. We purified and size
selected the library by incubating samples with AMPure XP
beads (1.8 x buffer to sample ratio) and eluting with nuclease-
free water.

PRO-seq library preparation

We prepared PRO-seq libraries as previously described
(34,35). After 30 min of treatment with either 500 nM
dTAGV-1 or DMSO, we washed cells in ice cold PBS. We col-
lected cells by adding buffer W [10 mM Tris-HCI (pH 7.5),
10 mM KCl, 250 mM sucrose, 5 mM MgCl,, 1 mM EGTA,
10% glycerol, 0.5 mM Dithiothreitol, 0.004 U/ml SUPERa-
seIN RNase inhibitor and fresh protease inhibitors] and scrap-
ing the cells, followed by centrifugation at 500 g for 5 min and
resuspension in buffer W. We added buffer P [10 mM Tris-
HCI (pH 7.5), 10 mM KCI, 250 mM sucrose, 5 mM MgCl,,
1 mM EGTA, 0.05% Tween-20, 0.1% NP40, 10% glycerol,
0.5 mM DTT, 0.004 U/ml SUPERaseIN RNase inhibitor and
fresh protease inhibitors] for 5 min to permeabilize the cells.
We centrifuged and resuspended the cells in buffer W twice
before pelleting the cells again and resuspending in buffer F
(50 mM Tris-HCI pH 8, 5 mM MgCl,, 1.1 mM EDTA, 40%
glycerol and 0.5 mM DTT). We snap froze aliquots in lig-
uid nitrogen and kept them stored at —80°C. PRO-seq library
prep was done in a method based on previously described pro-
tocols (34,36). After the run-on reaction, we added adapters
that included a random eight base unique molecular identifier
(UMI) on the 5" end of adapter that is ligated to the 3’ end of
the nascent RNA. We eluted and reverse transcribed the RNA

and performed 10 cycles of PCR. We purified the PCR reac-
tions with a MinElute PCR purification kit and did not per-
form size selection in an effort to preserve short nascent RNAs
in our libraries. We sequenced the libraries using paired-end
sequencing on a NextSeq 550.

PRO-seq analyses

Quality control and read alignment were performed as de-
scribed previously (37). We used cutadapt v3.5 to re-
move adapters from our reads (38), and f£gdedup v1.0.0
to deduplicate our libraries with the 3’ UMIs (https://github.
com/guertinlab/fqdedup). We removed 8-mer UMIs and re-
verse complemented the reads with FASTX-Toolkit v0.0.14
(https://github.com/agordon/fastx_toolkit). We aligned to
hg38 with bowtie2 v2.5.0 (29), sorted reads with sam-
tools v1.16.1 (30), and used seqOutBias v1.4.0 (31) to
convert reads to bigWig files. We used the PEPPRO guidelines
(39) to assess purity of nascent RNA and run-on efficiency
(Supplementary Figure S1). We used primaryTranscrip-
tAnnotation v0.1.0 and TSSinference (https:/github.
com/guertinlab/TSSinference) to infer gene annotations from
our PRO-seq data (40). We quantified nascent transcription
by querying the bigWig files within the gene annotation co-
ordinates with the bigWig v0.2.9 R package (https://github.
com/andrelmartins/bigWig) and UCSC Genome Browser Util-
ities (wigToBigWig v2.9) (41). We found differentially ex-
pressed genes with DESeg2 v1.38.3 (33). We normalized all
replicates by read depth and combined replicates for each con-
dition to obtain normalized intensities. We identified regions
of bidirectional transcription with dREG v1.0 (42). We identi-
fied overrepresented motifs de novo in dREG-defined regions
with MEME v5.4.1 (43). We modeled the rates of transcription
initiation and pause release using a compartment model as
previously described (44).

Compartment modeling

The compartment model was based on previous work from
our lab (44) with some modifications. Briefly, we conceptual-
ized transcription as RNA polymerases moving between com-
partments p (pause region) and b (the gene body) as defined by
the TSS and transcription termination site (TTS) coordinates
inferred from PRO-seq data by primaryTranscriptAn-
notation v0.1.0 and TSSinference (https://github.com/
guertinlab/TSSinference) (40). We defined rate constants for
transcription initiation (kj), promoter-proximal premature
transcription termination (kpr), pause release (k) and elon-
gation rate (kejong) (Supplementary Figure 52).

We considered the measurements of read densities in pause
windows and gene bodies to be at steady state. To determine
the pause window for each gene, we searched within the first
200 bp downstream of the most prominent TSS and chose the
50 bp window with the maximum summed PRO-seq signal
(p). The mean signal in the region starting 500 bp downstream
of the pause window and ending at the TTS is b, the poly-
merase density within the gene body. We describe the change
in p and b over time as:

dp

E = kinit - (kpre + krel) . 17 (1)
db
a = krel -p— kelong b (2)
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The rates kjong and Ry were assumed to be unaffected by
the treatment, whereas the values of ki, and k. may change.

We estimated parameters using the Levenberg—Marquardt
algorithm provided by the COPASI engine (45) and estimated
700 parameter sets for each gene. The constraints on param-
eters (units in events/second) were as follows:

10_8 = kinita kprev krel <1

30 < kejong < 60

These constraints were selected to encompass the range of
previously published rates of transcription initiation, prema-
ture termination, pause release and transcription elongation
(46-49).

ChIP and library preparation

We fixed cells with 1% formaldehyde for 10 min at 37°C and
quenched them with 125 mM glycine for 10 min at 37°C. We
then moved plates to ice and washed and scraped the cells
into ice-cold PBS containing fresh protease inhibitors. We cen-
trifuged cells in aliquots of 2 x 107 cells at 1500 g for 5 min,
snap froze them in liquid nitrogen, and stored them at —80°C.
After thawing the pellets, we lysed the cells in 1 ml lysis buffer
with protease inhibitors [0.5% sodium dodecyl sulfate (SDS),
10 mM EDTA, 50 mM Tris-HCI (pH 8.0)] on ice for 10 min.
Lysates were sonicated at 70% amplitude for 15 s on and 45 s
off for four sets of 20-min cycles. We moved sonicated lysates
to 1.5 ml tubes and clarified by centrifugation at 14 000 rpm
for 10 min in 4°C. We diluted 50 pl of the supernatant into
760 ul ChIP Dilution Buffer [0.01% SDS, 1.1% Triton X-100,
1.2 mM EDTA, 167 mM NaCl, 16.6 mM Tris-HCI (pH 8.0),
fresh protease inhibitors] for a total of 1 x 10° cells per repli-
cate; 1 ml (4 x 10° cells) was aliquoted into each of 3 tubes
with antibody (2 pg anti-HA Invitrogen #26183, 8 pg anti-
SP1 Santa Cruz Biotechnology sc-17824 X, 7 ug anti-Nrfl
Invitrogen MA5-35366, or mock IP) and incubated with end-
over-end rotation at 4°C overnight. We washed 80 ul Protein
A/G Magnetic Beads (New England Biolabs) per sample with
bead washing buffer (PBS with 0.1% BSA and 2 mM EDTA)
prior to incubating with samples for 90 min with rotation
at 4°C. After incubation the samples were washed once each
with low salt immune complex buffer [0.1% SDS, 1% Triton
X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris HCI (pH
8.0)], high salt immune complex buffer [0.1% SDS, 1% Tri-
ton X-100,2 mM EDTA, 500 mM NaCl, 20 mM Tris Hcl (pH
8.0)], LiCl immune complex buffer [0.25 M LiCl, 1% Igepal,
1% sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCI (pH
8.0)],and 1 x TE [10 mM Tris-HCI, 1 mM EDTA (pH 8.0)].
We eluted the immune complexes in elution buffer (1% SDS,
0.1 M sodium bicarbonate). We incubated each sample with
1ul RNase A for 10 min at 37°C. We digested the proteins by
adding Sul Proteinase K and incubating the samples in a 65°C
water bath overnight. We purified DNA with a MinElute PCR
purification kit, and prepared libraries with a NEBNext Ultra
II Library Prep Kit.

ChlIP-seq analyses

We removed adapters with cutadapt v3.5 (38) and aligned
to the hg38 genome assembly with Bowtie2 v2.5.0 (29). We
sorted aligned reads with samtools v1.16.1 and used se-
gOutBias v1.4.0 to generate bigWig files (30,31). All sam-
ples had aligned read depths above 10 million (Supplementary
Figure S3). We called peaks with MACS3 v3.0.0a6 (32). We
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quantified peak intensities by querying bigWig files in 400
base pair windows centered on peak summits and normalized
the counts with DESeqg2 v1.38.3 (SP1 ChIP) or read depth
normalization (ZNF143 ChIP) (33). We used the average nor-
malized peak counts from the ZNF143 ChIP control samples
to establish ZNF143 binding intensities and found differen-
tially bound peaks of SP1 and Nrfl before and after ZNF143
degradation with DESeq2 v1.38.3 (33). We found de novo
motifs with MEME v5.4.1 (43) and later STREME v5.4.1 (50)
through rounds of iterative motif analysis whereby we used
MAST v5.4.1 (51) to identify and remove the most common
motifs for SP1 or ZNF143 until we stopped finding signifi-
cant de novo motifs.

ATAC-seq analyses

We aligned raw sequence data to the hg38 genome as-
sembly with Bowtie2 v2.5.0, converted to BAM format
with samtools v1.16.1 and then to bigWig format with
segOutBias v1.4.0 (29-31). Peak calling with MACS3
v3.0.0a6 (32) employed the following arguments: -g 0.01
-keep-dup all -nomodel -shift -100 -extsize

200. We counted reads in peaks with the bigWig v0.2.9
R package (https://github.com/andrelmartins/bigWig) and
called differentially accessible regions with DESeq2 v1.38.3
(33). We calculated fraction of reads in peaks and aligned read
depth to assess quality of libraries (Supplementary Figure S4).

Results

ZNF143 is not detected on DNA after 30 min of
degradation

To determine the molecular function of ZNF143, we en-
gineered HEK-293T cells to express all alleles of ZNF143
tagged with a C-terminal inducible dTAG degron system, fa-
cilitating rapid and complete protein degradation (11). En-
dogenous tagging of ZNF143 causes a modest decrease in
protein levels (Figure 1A, lanes 1 and 2, and Supplementary
Figure S5A). Quantitative western blots indicate that <10%
of ZNF143 remains after 15 min of dTAGY-1 treatment
and ZNF143 is not detected at 30-90 min after induced
degradation. We profiled ZNF143 binding genome-wide by
ChIP-seq before and after 30 min of degradation to quan-
tify depletion on chromatin. On the same scale, ZNF143
is not detectable after 30 min of degradation (Figure 1B),
but digital over-exposure of the heatmaps indicates that
<5% of the original ZNF143 signal is detected on DNA
(Supplementary Figure S5B). This cell line represents a
powerful resource for investigating the molecular func-
tions of ZNF143 and directly identifying ZNF143 target
genes.

ZNF143 binds a degenerate 29 base motif at each
binding site in the genome

Next, we conducted iterative and exhaustive motif analysis of
ZNF143 ChIP-seq peaks to systematically identify and char-
acterize the diverse sequence motifs that ZNF143 binds in
the genome. We performed de novo motif analysis within
the 4682 ZNF143 ChIP-seq peaks and identified a canoni-
cal ZNF143 sequence motif within 58% peaks (Figure 1C).
ZNF143’s seven zinc fingers are known to bind a wider region
(23), so we performed the same analysis on remaining peaks
that lack the first identified motif. We found a second ZNF143
motif variant and two more iterations of this process identified
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Figure 1. ZNF143 is degraded and not detected on chromatin within 30
min of dTAG"-1-induced degradation. (A) Quantitative western blots
indicate that FKBPdegron™%V-tagged ZNF143 (lane 2) is expressed at
50% of untagged ZNF143 (lane 1). Lanes 2-7 are dilutions of the
untreated and tagged cell line. Lanes 8-12 are a time series of
degradation. Note that the arrow represents ZNF143 and there is a
nonspecific band that is unchanged directly below the arrow. (B) A
heatmap of all 4682 ZNF143 ChlIP-seq peaks indicates that ZNF143 is not
detected on chromatin after 30 min of degradation. The color scale
represents relative binding intensities of ZNF143 as determined by read
depth-normalized ChlIP-seq data. (C) Iterative de novo motif analysis
identified four ZNF143 motifs that are anchored on a central TGGGA
sequence. A total of 95% of ZNF143 peaks have at least one motif that
conforms to a de novo-identified motif with a P-value of 0.0005 of lower.
(D) The 29 mer seglLogo represents the average ZNF143 binding site,
where substantial degeneracy is tolerated outside the core TGGGA
postion. The first seqlLogo has information content (in bits) as the y-axis,
whereas the second seqglLogo shows the individual ACGT frequency at
each position.

other ZNF143 motifs (Figure 1C). A total of 95% of the peaks
had a de novo-identified motif that was clearly a ZNF143 mo-
tif variant (Figure 1C). These findings demonstrate ZNF143’s
flexibility in binding; it can accommodate a wide range of se-
quences beyond the core TGGGA sequence that is recognized
by zinc fingers 5 and 6 (23). By anchoring the analysis on this
core sequence, we calculated the average frequency of each
nucleotide (A, C, G, T) within a 100-base range, highlight-
ing how ZNF143’s binding preferences extend into the sur-
rounding genomic landscape. The nucleotide frequencies sta-
bilize outside a 29-mer core ZNF143 motif. This 29-mer core
is similar to the biochemically determined 27-mer ZNF143
core motif found previously (23). We generated a composite
motif using the frequencies in this window (Figure 1D). We
did not identify a motif de novo in 5% of binding sites; how-
ever, these peaks remain sensitive to ZNF143 depletion and re-
tain potential functionality. Low-affinity binding sites of tran-
scription factors, which do not strictly conform to a consensus
motif, are increasingly recognized as having a critical role in
gene regulation and development (53,54). We determined the
precise ZNF143 binding positions within each ChIP-seq peak
by assigning the motif with the lowest P-value in the peak as
the inferred 29 base binding site (Supplementary Figure S5C).
All subsequent references and analyses concerning ZNF143
binding focus on the 29-mer ZNF143 recognition sequences
within the ChIP-seq peaks. These analyses confirm the DNA-
binding function of ZNF143 and indicate that ZNF143 binds
a sequence-degenerate 29 base wide motif within chromatin.

ZNF143 maintains chromatin accessibility at a
minority of binding sites

To investigate the impact of ZNF143 on chromatin accessi-
bility, we conducted ATAC-seq analysis before and after 30
min of ZNF143 depletion. Fewer than 700 ATAC-seq peaks
significantly (False Discovery Rate < 0.1) change accessibil-
ity after 30 min of ZNF143 depletion (Figure 2A). Over 99%
of the significantly changed ATAC peaks decrease accessibility
and 92 % of the decreased accessibility peaks overlap ZNF143
binding sites (Figure 2B&C). Although the vast majority of de-
creased ATAC peaks are directly regulated by ZNF143 bind-
ing, the inverse is not true. Only a minority (13%; 620/4682)
of ZNF143 ChIP-seq peaks show significantly reduced chro-
matin accessibility upon ZNF143 ablation from chromatin.
These results underscore that while ZNF143 maintains open
chromatin at certain loci, its influence is not uniform across all
binding sites, suggesting that regulating chromatin structure is
not its primary function.

ZNF143 is an activator that predominantly
regulates transcription initiation

We performed nascent RNA profiling (PRO-seq) after 30 min
of ZNF143 depletion to identify direct ZNF143 target genes
(55). Hundreds of genes increase (up) and decrease (down)
transcription after 30 min of ZNF143 depletion (Figure 3A).
Although the expression of primary response genes goes in
both directions, this does not necessarily mean that ZNF143
functions as an activator and a repressor. The transcription
factors that we know most about are rapidly inducible, such as
heat shock factor and nuclear hormone receptors such as the
estrogen, androgen and glucocorticoid receptors. Although
genes are activated and repressed in the minutes following
the activation of these transcription factors, only the activated
genes are closer to the respective binding sites of the factor
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Figure 2. ZNF143 degradation leads to a decrease in chromatin accessibility. (A) The MA plot for the ATAC-seq peaks show that only six ATAC-seq peaks
increase chromatin accessibility after 30 min of ZNF143 depletion and 673 peaks decrease accessibility (FDR < 0.1). Pink indicates increased ATAC
peaks, and blue indicates decreased peaks. Dark gray dots are peaks that did not change accessibility significantly but are matched to increased and
decreased peaks on mean normalized peak intensity using the R package MatchIt (52). (B) An example ATAC-seq peak in the CCDC163 promoter
decreases accessibility and overlaps a ZNF143 binding site. (C) A total of 95% of ATAC peaks with reduced accessibility overlap with ZNF143 binding
sites. Although only a subset of ZNF143 binding events is linked to changes in chromatin accessibility, when ZNF143 is actively influencing chromatin, it

primarily functions to maintain chromatin accessibility.

(3,15,44,56-58). The repressed genes are no closer to the fac-
tor binding sites than unchanged control genes, so only the
activated genes are considered direct cis targets of these tran-
scription factors. We performed these same gene class/peak
proximity analyses for the ZNF143 regulated genes and un-
changed genes that are matched for nascent transcription lev-
els (Figure 3B). Nearly all the down genes have their maxi-
mum TSS within 500 bases of a ZNF143 binding site (Fig-
ure 3B) and the vast majority of ZNF143 binding sites are
in the upstream promoter region (Figure 3C). Unlike the heat
shock and hormone response systems, the opposing up gene
class is enriched for ZNF143 binding within 500 bases of an
up gene maximum TSS (Figure 3B), although ZNF143 bind-
ing is not limited to the promoter region (Figure 3C). These
results reveal that the predominant function of ZNF143 is
to activate transcription proximally. Next we will focus on
determining the molecular mechanism of ZNF143-mediated
activation.

The transcription cycle includes many steps in-
cluding chromatin decondensation, RNA polymerase
recruitment/initiation, promoter-proximal pause termi-
nation or release, and elongation (59,60). We quantified the
change in PRO-seq density within the 5’ pause region and
gene bodies of down genes and incorporated these values into
a compartment model (Supplementary Figure S2) to deter-
mine whether ZNF143 predominately regulates initiation or
pause release. Our modeling analysis indicates that a decrease
in initiation rate at every down gene with ZNF143 binding
within the 500 base promoter best explains the redistribution
of RNA polymerase in the pause and gene body regions upon
ZNF143 depletion (Figure 3D). In contrast, pause release
rates change in both directions (Figure 3D). Compartment
modeling of changes in PRO-seq signal cannot distinguish
between decreasing initiation and increasing premature pause
termination because these are directly opposing rate constants
(Supplementary Figure S2).

To determine whether ZNF143 regulates initiation/ recruit-
ment versus premature pause termination we sought to de-
termine whether ZNF143 affects TSS usage. Our rationale
is that if ZNF143 regulates initiation, then the predominant

TSS would change upon ZNF143 depletion. Previous work
showed that rapid depletion of the initiation factor TATA-
binding protein causes changes in TSS usage (61). The 5" end
of PRO-seq reads accumulate at a gene’s TSS and we inferred
the most prominent TSS (max TSS) before and after 30 min
of ZNF143 degradation from 5’ read pileups. We focused this
analysis exclusively on down genes with ZNF143 binding in
the 500 base promoter region. Down genes with promoter-
bound ZNF143 shift their most prominent TSS at twice the
rate compared to a control set of genes matched for TSS sig-
nal intensity (Figure 3E). For example, after ZNF143 degra-
dation ZNF30’s max TSS shifts from 159 to 18 bases away
from ZNF143’s binding site (Figure 3E). This suggests that
ZNF143’s close proximity inhibits initiation at the alternative
dTAG TSS. TSSs within the human genome are not focused
at a single position, but occur in windows and genes can con-
tain multiple TSS windows (62). The observed changes in the
most prominent TSS could occur because signal decreases at
the control TSS and an alternative less prominent TSS does
not change intensity. However, we observe a coupled decrease
in signal at the control TSS and an increase in signal at the
ZNF143-depleted TSS (Figure 3F). This pattern suggests that
not only does ZNF143 regulate transcription initiation as op-
posed to premature termination, but the redistribution of TSS
signal suggests that ZNF143 competes with other transcrip-
tion factors for RNA polymerase and/or initiation machinery.
The role of ZNF143 stimulating initiation is consistent with
the chromatin accessibility data from Figure 2. Although chro-
matin structure is influenced directly by the recruitment of
chromatin remodelers and histone-modifying enzymes, the re-
cruitment of RNA polymerase or initiation factors can also de-
plete nucleosomes, thereby altering the chromatin landscape.

ZNF143 directly represses genes by binding directly
over TSSs

The canonical molecular functions of ZNF143 are succinctly
described as DNA binding and stimulation of transcription
initiation. However, it is not immediately clear how these
functions lead to the direct cis repression of ZNF143 target
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Figure 3. ZNF143 binds in promoters to directly regulate transcription initiation. (A) The nascent transcriptomics MA plot of 13 276 genes shows 182
genes that increase transcription (up, pink) and 365 genes that decrease (down, blue) after 30 min of ZNF143 degradation (FDR < 0.1). The dark gray
dots represent genes that do not change expression after ZNF143 degradation but are matched to the mean normalized gene expression of the
differentially expressed genes. (B) A total of 95% of down genes are within 500 bases of a ZNF143 binding site. The up genes are also significantly
closer to ZNF143 binding sites compared to genes that are matched for expression level. The light and dark gray traces indicate the distances from
unchanged genes’ TSSs to the nearest ZNF143 binding site for matched genes. (C) Down genes have ZNF143 binding in the promoter; up genes have
no clear pattern of ZNF143 distribution and 66% have no local ZNF143 binding. The color scale represents the mean control sample ChlP-seq signal at
each of these motifs, which was normalized by read depth. (D) Compartment modeling indicates that ZNF143 regulates initiation and not pause release
at direct down target genes. Each point is a down gene and the y-axis values are the changes in rates that most likely explain the data. (E) We inferred
the locations of the predominant maximum TSS (max TSS) of each gene from normalized PRO-seq data for the control and dTAG conditions separately.
The locations of the max TSS of direct down target genes tend to change upon ZNF143 degradation. (F) We quantified the level of TSS usage with TSS
height, which refers to the mean normalized PRO-seq signal at that specific TSS in either the control or dTAG condition. The paired

box-and-whisker /violin plots show that, for the down genes with shifted max TSSs, a decrease in the control max TSS height is frequently accompanied
by an increase at the dTAG max TSS height. The bar charts show the fraction of max TSSs that increase in height after ZNF143 degradation for the
control and dTAG max TSSs separately, as well as the change in TSS height for genes that did not have a shifted max TSS after ZNF143 degradation.

genes observed in Figure 3B. ZNF143 binds both upstream
and downstream of up genes at comparable frequencies (Fig-
ure 3C), but it directly binds over the TSS of five genes (Fig-
ure 4A and B). ZNF143 exhibits stronger binding over the
TSS of four out of these five genes compared to matched
and down genes with TSS-bound ZNF143 (Figure 4B). These
observations support a model in which ZNF143 binding di-
rectly over the TSS competes with RNA polymerase for ac-
cess to the initiator sequence. The distribution of 5’ PRO-
seq reads remains consistent with or without ZNF143 deple-
tion at the one up gene, FIS1, that exhibits weak ZNF143
binding over the TSS (Figure 4C). However, a closer in-
spection of this gene reveals that the most prominent TSS
changes upon ZNF143 depletion and 5’ PRO-seq signal sub-
stantially increases at this new maximum TSS (Figure 4D). A
much stronger ZNF143 binding site is located directly down-
stream of this FIST TSS-isoform (Figure 4D). This observa-
tion suggests an independent repressive mechanism, where
ZNF143 binding directly downstream of a TSS acts as a
molecular roadblock, which will inhibit RNA polymerase

from progressing into the gene body and effectively repress
transcription.

ZNF143 directly represses genes by acting as a
molecular roadblock immediately downstream of
TSSs

FIS1 was not initially classified as a ZNF143-downstream
gene because we inferred a single isoform of each primary
transcript using the control data (40). We then extended our
analysis to the 28 up genes with ZNF143 binding within 500
bases downstream of their control TSSs (Figure 4E and F).
These 28 genes have strong ZNF143 binding downstream of
their start sites compared to matched and down genes with
downstream ZNF143 peaks (Figure 4F). These results are con-
sistent with a molecular roadblock model, whereby strong
transcription factor binding can inhibit RNA polymerase dur-
ing early elongation when it is accelerating and more vul-
nerable to pausing, backtracking and disassociation. Beyond
ZNF143’s role in DNA binding, we have established that it
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Figure 4. ZNF143 occludes sites of initiation and acts as a molecular
roadblock to directly repress genes in cis. (A) ZNF143 binds a 29bp motif
that spans PAF1's TSS. PAFT transcription increases upon ZNF143
depletion. (B) Each point with the violin plots is a bound ZNF143 motif
that spans a max TSS of the respective class. ZNF143 binds strongly over
the TSS of 4/5 genes that increase transcription upon ZNF143 depletion.
(C) FIST is the up gene from panel (B) with weak TSS binding of ZNF143
and no discernible changes in TSS usage occur upon depletion, as
measured by PRO-seq 5’ end pile ups. (D) ZNF143 binds directly
downstream from the TSS of a different isoform of FIS7. This FIS1
isoform becomes the most prominent FIST TSS upon ZNF143
degradation. A zoomed in view of main dTAG TSS is visualized in the right
panel. (E, F) ZNF143 degradation from strong binding sites directly
downstream of TSSs is associated with up genes. (G, H) Genic
bidirectional transcription at ZNF143 binding sites downstream of up
genes significantly decreases at 7/28 up genes.
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Figure 5. ZNF143 occludes downstream sequence elements to repress
transcription. (A) ZNF143 depletion reveals an accessible YY1 motif and
DPE that allows usage of a TSS that is 28 bases upstream of the ZNF143
binding site in the LYSMD1 promoter (cTSS, control max TSS position;
dTSS, dTAG max TSS position). (B) YY1's motif (MA1651.1) is enriched
directly downstream of TSSs.

also stimulates initiation. Importantly, RNA polymerase initi-
ates transcription at bidirectional regions across the genome,
not solely at genic TSSs (63,64). Bidirectional transcription
(42,65), especially an RNA polymerase colliding head on with
an elongating RNA polymerase or paused RNA polymerase,
could also act to repress transcription. We find that 7 out
of these 28 downstream ZNF143-binding genes have signif-
icantly reduced bidirectional transcription after ZNF143 de-
pletion (Figure 4G and H). This evidence supports the hypoth-
esis that ZNF143 not only activates but may also repress tran-
scription by promoting RNA polymerase initiation, highlight-
ing the importance of proposing specific mechanisms when
claiming transcription factors have dual activation/repression
functions.

ZNF143 occludes downstream sequence elements
to repress transcription

ZNF143 binds to the promoters of three up genes that have
an upstream shift in their TSS after ZNF143 depletion (Fig-
ure SA and Supplementary Figure S6). We hypothesized that
ZNF143 binding occludes a downstream sequence motif that
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contributes to initiation. The downstream promoter element
(DPE) located +28 to +32 downstream of TSSs was the first
downstream element shown to contribute to initiation by in-
teracting with TFIID (66). ZNF143 blocks a DPE that is lo-
cated at positions +27 to +31 within the LYSMD1 gene. Ad-
ditionally, YY1, an initiation factor (67,68), has a binding
motif that is commonly found directly downstream of TSSs
and between +100 and +300 positions downstream (69,70)
(Figure 5B). ZNF143 binds upstream of LYSMD1, GMPR2,
and ZNF583, and upon ZNF143 depletion, a YY1 motif
becomes accessible at each of these genes (Figure 5A and
Supplementary Figure S6). YY1 binding at the exposed site
may facilitate efficient initiation at the upstream TSS. This
YY1 occlusion mechanism may be acting simultaneously as
a roadblock and/or directing genic bidirectional transcrip-
tion for the upstream dTAG TSS (Supplementary Figure S6).
These three up genes are unique because ZNF143 is promoter-
bound and ZNF143 depletion causes an upstream TSS shift.
This mechanism cannot explain repression at up genes with
promoter-bound ZNF143 and no upstream TSS shift.

SP1 and Nrf1 redistribute to ZNF143 binding sites
to stimulate initiation

ZNF143 bound the promoters of 25 up genes with distances
and intensities comparable to those of down genes and no TSS
shift upstream of ZNF143’s binding site (Figure 3C). Given
the limited number of up genes, we catalogued all bidirec-
tionally transcribed putative regulatory elements across the
genome and analyzed transcriptional changes in these regions
after ZNF143 depletion (33,42) (Supplementary Figure S7A
and B). We then carried out de novo motif discovery within
the bidirectionally transcribed regions of both down and up
classes. As anticipated, the ZNF143 motif was prevalent in the
down class; however, its presence in the up class was unex-
pected (Supplementary Figure S7B). Additionally, the SP tran-
scription factor family DNA motif was identified de novo in
the up class (Supplementary Figure S7B). A total of 99 bidirec-
tional up regions have both ZNF143 ChIP peaks and ZNF143
motifs, with 19 of the ZNF143 motifs overlapping SP motifs
(Supplementary Figure S7C and D). We performed SP1 ChIP-
seq before and after 30 min of ZNF143 depletion to address
the possibility that SP1 is redistributing to these sites when
ZNF143 vacates. Each of the these 19 regions overlapped an
SP1 ChIP-seq peak and 13 of the peaks increased SP1 inten-
sity upon ZNF143 depletion (Supplementary Figure S7E). SP1
also regulates initiation (44,72), so these results are consistent
with a model whereby a canonical activator can repress a gene
if it competes with a more potent activator for the same stretch
of DNA. SP1 is clearly not replacing ZNF143 at all nineteen
sites, but recall that ZNF143 binds a 29 base region and the
ZNF143 motif may be overlapping the motifs for other initi-
ation factors.

SP1 motifs were among the first promoter sequence ele-
ments to be identified as regulatory (73) and SP1 has had a
defined role in initiation for 30 years (72). Recent studies have
further refined SP motifs as defining elements of promoter ar-
chitecture in the genome (69,70,74). Motifs recognized by par-
alogs of ZNF143, along with Nrfl, ETS, NFY, CREB/ATF
(bZIP) and SP/KLF factors, are considered critical in dictat-
ing promoter structure and initiating transcription (69,70,74).
The sequence-specific transcription factors that bind these mo-
tifs may be a class of sequence-specific transcription factors

that recruit the initiation machinery and RNA polymerase.
Our findings confirm the enrichment of these motifs within
bidirectional promoters across the human genome (Figure 6A
and Supplementary Figure S7). We searched for the motifs of
these sequence-specific initiation transcription factors within
the 29-mer ZNF143 motif of these 25 genes with promoter-
bound ZNF143. At least one of the bZIP, SP/KLFE, ETS and
Nrfl motifs overlapped the ZNF143 motif in all genes except
TSNAXIP1 (Supplementary Figure S8A). We also observe the
same overlap of ZNF143 and Nrf1/ETS/SP motifs at bidirec-
tionally transcribed regions from Supplementary Figure S7D
(Supplementary Figure S8A).

We propose that other activating factors replace ZNF143
at these promoters when ZNF143 is depleted. To test this
hypothesis, we performed Nrfl ChIP-seq before and after
ZNF143 depletion and we analyzed differential SP1 and Nrf1l
binding at the SP1/ZNF143 and Nrfl/ZNF143 overlaps in
up gene promoters. Sixteen up genes with ZNF143 in the pro-
moter have an overlapping SP motif within an SP1 ChIP-seq
peak and 10 of the 16 have an increase in SP1 ChIP signal af-
ter ZNF143 depletion (Figure 6B and C, and Supplementary
Figure S8B). The promoters of ZNF688, UTP3 and PYCR2
exhibit a statistically significantly (FDR < 0.01) increase
in SP1 signal upon ZNF143 depletion (Figure 6C). Fifteen
up gene promoters with overlapping Nrfl/ZNF143 motifs
also overlap Nrfl ChIP-seq peaks (Figure 6D and E, and
Supplementary Figure S8C). ZNF324B and LRRC435 had sig-
nificantly increased Nrfl binding after ZNF143 depletion
(FDR < 0.01, Figure 6E). These results suggest that a canoni-
cal activator may repress genes by competing for DNA bind-
ing with a more potent activator. However, we appreciate that
the molecular calculus for such a mechanism is complex. For
instance, a very strong activator might have a brief residency
time on DNA, making its overall contribution minimal, while
a modest activator could have more stable DNA binding and
effectively stimulate transcription. Given that each promoter
has a unique sequence context, predicting transcriptional out-
comes solely based on sequence is challenging. To fully under-
stand the competitive interactions between two transcription
factors targeting the same DNA region, one must consider: (i)
their relative binding efficiencies and residency times within
specific chromatin contexts; (ii) the transcription cycle stages
each factor influences; (iii) the relative activation potency of
each factor; and (iv) which step(s) in the transcription cycle
limit transcriptional output of the target gene.

Discussion

When discussing the context-specific dual roles of transcrip-
tion factors as both activators and repressors, it is crucial to
propose an underlying mechanism (Figure 7). The most well
characterized example of dual activator/repressor function in
gene regulation is that of the A repressor. The A repressor is
an activator that interacts with the bacterial RNA polymerase
to stimulate initiation, but it was named repressor because it
represses transcription of the lytic genes, which account for
nearly all the phage genes. The A repressor binds to a precise
position in its own promoter to stimulate RNA polymerase
initiation and activate the gene encoding itself (75). This same
binding event blocks RNA polymerase from accessing and
initiating transcription of lytic genes (75-77). The molecular
functions of both A repressor and ZNF143 are to bind DNA
and stimulate initiation. Binding of ZNF143 to DNA is neces-
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Figure 6. ZNF143 represses nascent transcription by competing with SP1 and Nrf1 for promoter binding. (A) We identified promoter regions within
sense and divergent TSSs called from pileups of the 5" ends of PRO-seq reads. SP motifs identified by FIMO (71) are enriched in regions between
bidirectional start sites. (B) After ZNF143 degradation, ZNF688 transcription increases and SP1 ChlP-seq signal overlapping ZNF143 increases
significantly. Sequence logos for ZNF143 and SP1 demonstrate the overlapping binding sites of these factors. The ZNF688 5" untranslated region
annotation is extended to the TSS inferred from our PRO-seq data because this position also aligns with the human expressed sequence tag HY111461.
(C) SP1 ChlP-seq signal overlapping ZNF143 increases significantly (FDR < 0.01) after ZNF143 degradation and increased gene expression for genes
ZNF688, UTP3 and ZKSCANS. (D) After ZNF143 degradation, ZNF3248B transcription increases and Nrf1 ChIP-seq signal overlapping ZNF143 increases
significantly. Sequence logos for ZNF143 and Nrf1 illustrate the overlapping binding sites of these factors. (E) Nrf1 ChIP-seq signal overlapping ZNF143
increases significantly (FDR < 0.01) after ZNF143 degradation in the promoters of ZNF324B and LRRC45.

sary to stimulate initiation; like A repressor, ZNF143 typically
binds upstream of a initiation site to activate transcription.
Binding in a promoter and stimulating initiation may result
in repression if ZNF143 displaces a more potent stimulator
of initiation. Binding over an initiator sequence or within a
gene body can cause repression via multiple described mecha-
nisms. While ZNF143 can both activate and repress genes, its
molecular functions of DNA binding and promoting initiation
remain constant.

Many transcription factors are described as having both ac-
tivator and repressor activities and context specificity is often
vaguely invoked as the explanation. There are conflicting re-
ports on whether MYC acts as an activator at specific genes
or a direct repressor at some genes (78-82). The acute de-
pletion of an auxin inducible degron tagged MYC within 30
min, coupled with nascent RNA sequencing, allowed for the
identification of primary MYC-responsive genes (83). A to-
tal of 98% of these genes were repressed, indicating that the
direct effect of MYC regulation is transcriptional activation

(83). OCT4 is one of the four pluripotency factors, the ex-
pression of which is sufficient to reprogram differentiated fi-
broblasts into induced pluripotent stem cells (84). However,
the genes OCT4 regulates in pluripotent stem cells are diffi-
cult to identify, as the half-life of its protein and mRNA are
much too long for traditional knockdown methods to isolate
the primary effects of depletion (85). A recent study compared
extended knockdown to rapid depletion with targeted protein
degradation and found that only the latter was able to iden-
tify that the primary effect of OCT4 on transcription is the
activation of pluripotency factors and that the delayed acti-
vation of trophoblast-associated genes is a secondary effect of
OCT4 depletion (85). A key takeaway from these studies is
that these factors directly activate transcription of their tar-
get genes. The growing list of transcription factors that can
be acutely perturbed provides evidence that most factors do
not activate some direct targets and repress others. Addition-
ally, these findings highlight a recurring theme: in contrast
to extended knockdown approaches, the acute depletion of
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Figure 7. The molecular function of ZNF143 is to bind DNA and facilitate initiation. (A) ZNF143 binds to the promoter and stimulates transcription at the
majority of its target genes. (B) ZNF143 binding can cause repression if binding occurs over a TSS, immediately downstream of a TSS or in competition
with other activators. (C) ZNF143's repression mechanisms can be further specified depending on the local environment of the ZNF143 binding site. The
number of genes in the left barchart from top to bottom is 28, 5 and 28. The right bar chart top to bottom has the following number of genes in each
category: 7 (roadblock/bidirectional), 21 (roadblock), 1 (roadblock and TSS occlusion), 4 (TSS occlusion), 2 (complex promoters with no proposed
mechanism), 10 (possible competition with sequence-specific promoter factors), 3 (occlude DPE and/or YY1), 8 (possible competition with SP1 and/or

Nrf1) and 5 (competition with SP1 or Nrf1).

sequence-specific factors tends to impact the transcription of
only a limited number of primary response genes (86,87).

There is substantial data suggesting that transcription fac-
tors specialize and recruit either corepressors or coactivators.
We can conceive of exceptions to this rule, but we would ar-
gue that a factor can become a fundamentally different pro-
tein with distinct functions based on ligand binding status or
post-translational modifications. The most well-characterized
example of this is the thyroid hormone receptor (THR). THR
binds to DNA and recruits corepressors in the absence of thy-
roid hormone (88); THR recruits coactivators when bound by
thyroid hormone (89-92). Post-translational modifications,
such as phosphorylation or acetylation, fundamentally change
the identity of a protein and this may result in the ability to dif-
ferentially interact with cofactors. Although we were unable
to identify well-characterized examples of post-translational
modifications that switch interaction partners from coactiva-
tors to corepressors or vice versa, this mechanism has been
suggested for STAT3, which recruits corepressors exclusively
when acetylated (93). Extending this general mechanism, a
transcription factor may be bound to DNA, but only interact
with coactivators when post-translationally modified. In the
absence of the modification, the factor would be a functional
repressor by occluding the binding sites of other activating
factors and failing to recruit coactivators.

Another key part of context for defining the role of a TF
is promoter strength. Transcription factor activity modeled in
E. coli demonstrates that a TF can appear to change from an
activator to repressor or vice versa depending on promoter
strength and which step of the transcription cycle is regulated
by the TF (94). In their model, transcription factors were char-
acterized by their ability to either regulate the stability of RNA
polymerase or promote transcription initiation. They found
that TFs with strong stabilizing functions but weaker initiat-

ing abilities moved from activation to repression as promoter
strength increased. We can envision how the same RNA poly-
merase stabilization mechanism might appear to repress tran-
scription in the presence of a strong promoter if the stabiliza-
tion interferes with the ability of RNA polymerase to begin
transcription. On the other end of the spectrum, TFs that were
strong initiators but weaker stabilizers moved from repression
to activation with increasing promoter strength. Once again,
we see that a TF appears to change activity when in reality
the strong promoter may make it easier for transcription to
initiate when perhaps other factors are able to improve RNA
polymerase stability. The importance of promoter strength in
eukaryotes is highlighted by an effector domain mutagene-
sis and mapping study that identified effector domains with
the ability to seemingly both activate and repress transcrip-
tion (95). Here the definition of ‘activator’ and ‘repressor’ be-
comes important, as this study defined activators as effector
domains able to increase expression as compared to basal lev-
els from a minimally active promoter and repressors as those
able to decrease expression as compared to basal levels from a
constitutively active promoter. According to these definitions,
it is possible that a ‘bifunctional’ effector domain is actually
a weak activator if it promotes transcription, but at a lower
level than the constitutively active promoter. Although the de-
tails of transcription regulation in prokaryotes differs from
eukaryotes, the overall principle appears to be similar in that
promoter strength, combined with the particular role of a TF,
both contribute to whether a particular TF appears to be ac-
tivating or repressing transcription. Understanding the rela-
tionship between promoter strength and the specific functions
of TFs can explain their seemingly dual role in activating and
repressing gene expression.

Although this study convincingly demonstrates that
ZNF143 depletion can lead to the repression of local genes
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via our proposed plausible mechanisms (Figure 7), we have
yet to distinguish between incidental regulation and conserved
evolutionary mechanisms that specifically govern these genes.
The identity of the ZNF143-repressed genes suggest some co-
ordinated regulatory control. FIS1 is a mitochondrial fission
gene and ZNF143 positively regulates nuclearly encoded mi-
tochondrial genes (24). We speculate that activating nucle-
arly encoded mitochondrial genes that are involved in mi-
tochondrial biogenesis and function while simultaneously re-
pressing fission genes can be a strategic response to enhance
mitochondrial function and biogenesis. This coordinated re-
sponse may build a robust mitochondrial network to meet
increased metabolic demands or recover from damage more
effectively. Another gene that is repressed in cis by ZNF143
is THAP11. THAP11 binds to a nearly identical sequence
motif as ZNF143 (14,96), although there is no clear evo-
lutionary conservation of their respective DNA binding do-
mains. The regulation of THAP11 by ZNF143 is not clear
from our data, although we propose that ZNF143 displaces
an ETS factor (Supplementary Figure S8A). Regulation of
THAP11 is likely more complicated, as close inspection of
the locus reveals an unannotated TSS that is flanked by two
ZNF143 ChIP peaks, which are also likely THAP11 binding
sites (Supplementary Figure S9). Moreover, usage of this unan-
notated TSS increases substantially upon ZNF143 degrada-
tion. Given the interplay between ZNF143 and the regulation
of genes like FIST and THAP11, it is likely that at least some
aspects of regulatory repression are crucial for maintaining
homeostasis and orchestrating cellular responses to metabolic
changes. Although our study is within a single cell line, the
molecular functions of transcription factors tend to be consis-
tent across cell types, even though the specific genes that are
regulated can be different.

This work underscores the significance of using rapidly in-
ducible systems to study molecular mechanisms. Additionally,
we highlight that while genomic experiments and analyses in-
dicated ZNF143 was repressing a subset of genes in cis, a
more detailed examination of these repressed genes was essen-
tial to suggest mechanisms of repression. We recognize that
a thorough understanding of biological systems necessitates
an in-depth grasp of the individual components and mecha-
nisms. We therefore anticipate that the focus of scientific in-
quiry will shift away from broad molecular genomics studies,
high throughput reporter assays and large scale screens to-
wards more focused, mechanistic investigations.

Data availability

All analysis details and code are available at https:/
github.com/guertinlab/znf143_degron and https://doi.org/10.
5281/zenodo.14080968. Raw sequencing files and pro-
cessed bigWig files are available from GEO accession
record GSE266491 (PRO-seq), GSE266490 (ATAC-seq) and
GSE266489 (ChIP-seq). Quality control metrics and num-
ber of replicates for PRO-seq (Supplementary Figure

S1), ChIP-seq (Supplementary Figure S3) and ATAC-seq
(Supplementary Figure S4) exceed standards within the field.

Supplementary data
Supplementary Data are available at NAR Online.
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